The largest of Saturn’s diverse family of moons, Titan is also arguably one of the more interesting worlds in our Solar System with a thick haze-filled atmosphere, vast lakes of liquefied methane and ethane, wind-sculpted dunes of granulated hydrocarbons and ample evidence for a long and interesting geologic history. Since entering orbit around Saturn on July 1, 2004, NASA’s Cassini spacecraft has sent back a steady stream of data about Titan from well over one hundred targeted flybys as part of its larger mission to study Saturn as well as its rings and diverse system of moons. Combined with the data from the Huygens probe carried by Cassini which plumbed the atmosphere of Titan and landed on its surface on January 14, 2005, Titan is easily the best studied moon in the Solar System after our own natural satellite.
While Titan has slowly revealed itself with each encounter by Cassini over the last decade, it was only a third of a century ago on November 12, 1980 when Voyager 1 made the first close flyby of Titan as part of its historic mission of discovery. Before this time even Titan’s basic properties were largely unknown and this distant world was a bona fide mystery.
Dutch astronomer Christian Huygens discovered Titan in 1655. It orbits Saturn at a distance of 1,223,000 kilometers once every 15.95 days. As telescopes improved in the centuries following its discovery, Titan was found to display tiny disk just under one arc second across making it the largest of Saturn’s moons by far. In 1908 Catalan astronomer Jose Comas Sola published his observations of Titan’s pronounced limb darkening. Over the decades that followed, telescopic observations by other astronomers confirmed this and there were even reports of faint markings visible on the face of Titan. During this time, published estimates for the diameter of Titan hovered around 5,000 kilometers, making it roughly the same size as Mercury and in contention for being our Solar System’s largest natural satellite.
Oddly enough, one of the best-determined properties of Titan before the Space Age was its mass. Several studies performed during the first half of the 20th century of how Titan perturbed the motions of Saturn’s other moons found a value for the mass of Titan that was within 2% of today’s accepted value of 1.82 times that of Earth’s Moon. This combination of mass and diameter indicated a density that was consistent with a composition of roughly equal parts of rock and ice like Jupiter’s similarly sized moons, Ganymede and Callisto.
By far one of the most interesting observations of Titan made before the Space Age was the spectroscopic detection of methane in 1944 by Dutch-American astronomer Gerard Kuiper. His results implied the presence of an atmosphere with a surface pressure of at least 100 millibars, or about one tenth of Earth’s atmospheric surface pressure. The presence of an atmosphere would explain the observed limb darkening of Titan’s disk. Calculations performed by Rupert Wildt of the University of Gottingen during the 1930s had already suggested that Titan was massive and cold enough to hold onto an atmosphere composed of gases with a molecular weight of 16 and heavier. The detection of methane, with a molecular weight of 16, would therefore not be unexpected. The presence of a substantial atmosphere is the one property of Titan that makes it unique among all the moons in our Solar System.
Preparing for Voyager
Driven in large part by the launching of the first lunar and planetary probes in the early years of the Space Age, planetary astronomy experienced a renaissance in the 1960s as NASA launched probes to the Moon and beyond. In 1970 NASA announced its intention to launch a series of probes to the unexplored outer planets using a rare planetary alignment that permitted a spacecraft to fly by successively more distant planets. Called the Grand Tour, this mission would launch a series of spacecraft in the late 1970s to flyby every outer planet from Jupiter to Pluto (which was still considered a planet back then). In the end this mission proved to be too ambitious and far too expensive with an estimated price tag of $900 million or over $5 billion in today’s money. In 1972 NASA scaled back the mission to a single pair of Mariner-class spacecraft to take advantage of the 1977 launch window to Jupiter and Saturn. Originally designated “Mariner Jupiter-Saturn 1977”, this more modest mission was managed by the Jet Propulsion Laboratory (JPL) and could be completed with a flight time of four years at an estimated cost of $250 million. Eventually renamed Voyager, a high priority target for this mission was Titan.
In order to properly design these spacecraft, their instruments and the mission, scientists needed to know more about Titan. Detailed examination of the spectrum of Titan in the early 1970s showed that the amount of methane in Titan’s atmosphere was greater than Kuiper had originally estimated. In addition, there was evidence for the presence of another gas, possibly in large amounts, in the atmosphere of Titan that was not detectable from Earth. There was much speculation on what these gases were but one candidate, nitrogen, came into favor through the 1970s. Titan was expected to contain ammonia ice when it formed. If ammonia was released from the interior and into the atmosphere, it would have been destroyed quickly by solar ultraviolet radiation to form hydrogen, which would have escaped from Titan, and nitrogen, which with a molecular weight of 28 was heavy enough for Titan to hold.
Infrared photometry showed the presence of ethane, ethylene, and acetylene in Titan’s atmosphere. These and other more complex hydrocarbons yet to be detected were generated by reactions between fragments of methane molecules generated by exposure to solar and cosmic radiation. Infrared and radio measurements also implied temperatures elevated above those expected for a simple blackbody, indicating the presence of a greenhouse effect. Scientists explained the results from polarization studies performed in the early 1970s by the presence of clouds or an aerosol haze. A ready source of aerosols on Titan would be complex hydrocarbons generated by various chemical reactions involving methane. These organic compounds would also explain Titan’s distinctive red color.
Renewed study of the tiny disk of Titan showed that its pronounced limb darkening had led to a systematic underestimation of its apparent size. Observations of Titan as it was occulted by the Moon in 1974 showed that it had an optical diameter of 5,800 kilometers, which would make Titan the largest moon in the solar system. However, it was widely recognized that this measurement was probably biased by clouds or haze layers that could be hundreds of kilometers above Titan’s surface. Not only was the true diameter of this moon more uncertain than ever, it was strongly suspected that clouds or haze could obscure the surface from the view of a passing spacecraft.
With all the uncertainties in our knowledge of Titan, models of its atmosphere ran the gamut of properties. At one extreme was a thin atmosphere of primarily methane with a surface pressure of only 20 millibars (about 2% of Earth’s surface pressure) and a temperature of 80 K. The temperatures would reach a high of 160 K high in the aerosol-laden Titanian stratosphere in this model. At the other extreme was a model of a thick atmosphere dominated by nitrogen with a methane concentration of less than 7%. In this model the surface pressure was 21 bars (about 21 times that of the Earth) and the temperature reached a comparatively balmy 200 K due to a strong pressure-induced greenhouse effect not unlike the type seen on Venus. Methane clouds would form between 100 and 120 kilometers above the surface where the atmospheric pressure was still 600 millibars. Because of Titan’s low surface gravity, the column of gas needed to create elevated surface pressures would be many times higher than was needed on Earth. Although no observations of the time required it, models with even higher surface pressures and temperatures could be contrived assuming higher methane concentrations and the ad hoc presence of other infrared absorbing gases, to the point where Titan would almost be a tiny gas dwarf.
Between the two extremes was an atmospheric model championed by Donald Hunten of the University of Arizona. His model assumed a Titanian atmosphere dominated by nitrogen with less than 7% methane (the saturation point of methane under the assumed conditions). The atmospheric conditions in this model were close to the triple point of methane where it can exist simultaneously as a gas, liquid, or solid. As a result, methane on Titan might play the same role as water in Earth’s atmosphere. Clouds of liquid or solid methane would be present that could extend to the surface depending on the atmosphere’s methane concentration. Conditions on the surface entirely depended on the unknown value for radius of Titan’s surface: the smaller the radius, the higher the surface pressure and temperature would be. Using the best pre-Voyager estimate of Titan’s surface temperature of 87 K, the surface pressure was expected to be about 2 bars, or twice Earth’s surface pressure.
What the actual surface of Titan would be like was even more uncertain. Given its bulk density, it was expected that the surface would be composed of ice. While ice would be as hard as rock at the temperatures likely to be found on Titan, the geological processes at work on such an alien world were mere speculation in the 1970s. Assuming the least dense model for Titan’s atmosphere, it would be cold enough for methane ice to cover the surface. As models with ever denser atmospheres are considered, the conditions on the surface would allow for liquid methane to exist in bodies whose sizes ranged from isolated puddles to a world-encircling ocean. It all depended on the properties of the atmosphere and the concentration of methane, which were then unknown. Scientists expected that the aerosols in the hazy atmosphere generated by the photolysis of methane would eventually fall out of the atmosphere and accumulate on the surface. After billions of years this material could mantle the icy surface in a layer that could be hundreds of meters thick. Just like its atmosphere, what the landscape of Titan might be like was almost pure speculation.
The Voyager Mission
The Voyager spacecraft and their mission were designed to provide information not only on Titan but also the other moons in the Jovian and Saturnian systems, as well as the planets themselves. A pair of identical 825-kilogram probes were launched using a Titan IIIE-Centaur fitted with a TE 364-4 solid rocket motor to provide the extra kick needed to reach the outer Solar System. Voyager 2 was launched first on August 20, 1977, while Voyager 1, flying a faster trajectory that would bring it to Jupiter and beyond first, followed on September 5.
Each nuclear-powered Voyager probe carried identical sets of instruments to measure the fields, particle, and plasma environments not only near their targets but during the long interplanetary cruise as well. Mounted on a pointable scan platform on the end of a boom were various boresighted sensors for infrared radiation, polarimetry, and ultraviolet spectroscopy, as well as wide- and narrow-angle cameras. These instruments could be directed towards a target of interest while Voyager’s dish antenna, 3.7 meters in diameter, kept pointing towards the Earth to transmit its findings. Radio transmissions from this antenna could also be used to probe the properties of a body’s atmosphere as a function of altitude as Voyager passed behind it as viewed from the Earth. Radio occultation would also allow a direct determination of the radius of Titan’s solid surface.
The trajectories the Voyager spacecraft took through the Jupiter and Saturn system were tailored to balance a number of sometimes conflicting mission priorities. Because Titan was such an important target in the Saturn system, Voyager 1 flew a trajectory designated “JST” for “Jupiter-Saturn-Titan”. This trajectory allowed Voyager 1 to flyby Titan at a range of 4,000 kilometers and subsequently pass behind it as viewed from the Earth so that the spacecraft’s radio transmissions could probe the atmosphere, determine the moon’s radius as well as further refine its mass. During its approach to Titan, Voyager’s cameras would be used to image 90% of the moon’s illuminated disk at a scale of better than 1.7 kilometers per pixel and 50% at a scale of 650 meters per pixel or better. These images would allow the nature and extent of Titan’s clouds to be determined as well as observe the Titanian surface through any breaks in those clouds. The close pass would also permit the detection of any magnetic field Titan might possess.
The trajectory for Voyager 2, which would reach Saturn nine months after Voyager 1, was designated “JSX” and included two options. The first, “X=TB”, would be flown if Voyager 1 failed to meet its objectives at Titan. Voyager 2 would be directed to flyby Titan at a range of 12,000 kilometers before passing behind Titan as viewed from the Earth to probe its atmosphere. If Voyager 1 was successful and its sister was still healthy, Voyager 2 would be free to follow a different trajectory past Saturn called “JSX (X=U)” that allowed it to make a complementary survey of Saturn and then fly on to Uranus and possibly Neptune, thus preserving a piece of NASA’s original Grand Tour. During the time of the Voyager encounters, there were no trajectories that allowed a close pass by Titan while preserving a Uranus flyby option (see”Voyager 2: The First Uranus Flyby“).
After Voyager 1 and its sister had successfully completed their close encounter with Jupiter and its system of moons in March and July 1979, respectively, they continued on towards their encounter with Saturn. The Voyagers would not be the first to reach the famous ringed planet, however. Pioneer 11 made an initial reconnaissance of the system during its closest approach on September 1, 1979 after it had travelled 2.5 billion kilometers across the Solar system following its own close encounter with Jupiter in December 1974. During the outbound leg of its trajectory past Saturn, Pioneer 11 passed within 355,600 kilometers of Titan. During this time, the small spacecraft made a series of observations of Titan indicating the presence of an optically thick layer of aerosols with a cloud top temperature of 75 K. The temperature at greater depths could not be determined. The single best image of Titan acquired by Pioneer’s relatively primitive Imaging Photopolarimeter was taken at a range of about 360,000 kilometers and had a resolution of only 179 kilometers per pixel. The image showed an essentially featureless disk with an apparent diameter of 5,690 and 5,760 kilometers at red and blue wavelengths, respectively. The observations now supported the view that Titan had a an opaque, hazy atmosphere and that Voyager had little prospect of viewing the moon’s surface.
As the results from Pioneer 11 encounter with Saturn were being digested, Voyager 1 started making regular observations of its own during its long approach in the summer of 1980. By November, Titan started appearing more and more planet-like to the approaching spacecraft as new observations were recorded. Voyager 1 made its closest approach of 3,915 kilometers from Titan’s surface at 5:41 UT on November 12, 1980, about 18 hours before its closest approach to Saturn. This encounter with Titan would be the closest either Voyager would pass by any planet or moon during their long historic flights.
Data from Voyager’s spectrometers showed the presence of methane, ethane, and a veritable zoo of other organic compounds. Nitrogen was also detected in abundance. As feared, the approach imagery of Titan showed it to be a nearly featureless orb with the surface completely obscured by a deep haze layer composed of organic aerosols. While subtle differences in the haze layers were noted, the vidicon-based cameras used by the Voyagers were insensitive to the near-infrared windows eventually exploited by Cassini to glimpse the Titanian surface through this haze. Only in 2004 did careful image analysis by Richardson et al. using modern digital data processing tools reveal faint traces of surface features in the original Voyager 1 imagery. This was already after these features had been seen in observations from NASA’s Hubble Space Telescope and large ground-based telescopes.
An initial examination of Voyager’s radio occultation data hinted that the surface was not detected. The radio beam had apparently been refracted and absorbed too much by Titan’s dense atmosphere. However, a more detailed examination of the data showed that while the radio signal did indeed fade below detectability during ingress, the surface of Titan was definitely observed during egress. A comparison between the data sets showed that the signal was lost during ingress almost at the surface. The analysis of this data showed Titan to have properties close to today’s accepted values: a diameter of 5,152 kilometers, a surface temperature of about 94 K, and a pressure of 1.47 bars. The radio occultation data combined with that from the ultraviolet spectrometer demonstrated that most of the atmosphere was composed of nitrogen, just like the Earth’s atmosphere. Hunten’s model for Titan’s atmosphere had been vindicated. Titan was also firmly established as our solar system’s second largest moon just behind Ganymede but ahead of Callisto. And with the success of this first encounter, Voyager 2 was free to fly to Uranus and beyond.
After Voyager 2 made its own observations during a distant 664,000-kilometer pass by Titan on August 26, 1981, it would be almost 23 years before another spacecraft visited Titan. While the Voyager data answered many questions about the basic properties of Titan, they also raised many new questions about the conditions on the still unseen surface. It would take the landing of the ESA Huygens probe and over one hundred targeted flybys by Cassini to begin to reveal the true nature of Titan’s surface—as well as raise yet more questions to be answered by future missions.
Follow Drew Ex Machina on Facebook.
Related Reading
“Voyager 2: The First Uranus Flyby”, Drew Ex Machina, January 24, 2016 [Post]
“Finishing the Grand Tour: Voyager 2 at Neptune”, Drew Ex Machina, August 25, 2019 [Article]
General References
J. Kelly Beatty, “Rendezvous with a Ringed Giant”, Sky & Telescope, Vol. 61, No. 1, pp 7–18, January 1981
John Caldwell, “Thermal Radiation from Titan’s Atmosphere”, in Planetary Satellites (ed. Joseph A. Burns), pp 438–450, The University of Arizona Press, 1977
Donald M. Hunten (editor), The Atmosphere of Titan (SP-340), NASA, 1974
Donald M. Hunten, “Titan’s Atmosphere and Surface”, in Planetary Satellites (ed. Joseph A. Burns), pp 420–437, The University of Arizona Press, 1977
Donald M. Hunten, “A Titan Atmosphere with a Surface Temperature of 200 K”, in The Saturn System (CP-2068) (eds. Donald M. Hunten and David Morrison), pp 127-141, NASA, 1978
E.C. Kohlhase and P. A. Penzo, “Voyager Mission Description”, Space Science Reviews, Vol. 21, pp. 77-101, 1977
David Morrison, Voyages to Saturn (SP-451), NASA, 1982
Tobias Owen, “Titan”, Scientific American, Vol. 246, No. 2, pp 98-109, February 1982
James Richardson, Ralph D. Lorenz and Alfred McEwen, “Titan’s surface and rotation: new results from Voyager 1 images”, Icarus, Vol. 170, pp. 113-124, 2004
Bradford A. Smith et al., “Encounter with Saturn: Voyager 1 Imaging Science Results”, Science, Vol. 212, No. 4491, pp 163-191, April 10, 1981
E.C Stone and E.D. Miner, “Voyager 1 Encounter with the Saturn System”, Science, Vol. 212, No. 4491, pp 159-163, April 10, 1981
G.L. Tyler et al., “Radio Science Investigations of the Saturn System with Voyager 1: Preliminary Results”, Science, Vol. 212, No. 4491, pp 201-205, April 10, 1981
Very very interewsting his a good job thank you very appreciate your faith frines from Italy Rome.
I had fixed in my mind that the Voyager 1 encounter with Titan did not reveal much and we missed the opportunity to go to Pluto from Saturn. Thank you for your detailed discussion of the information recorded by V1 and what it means. I also like the look-back at the data with modern processing methods. A great case for why the Titan encounter by Voyager 1 was so important!